發光的「銅」心 / 廖旭茂

發光的「銅」心

廖旭茂

國立大甲高級中學
教育部高中化學學科中心
[email protected]

n  影片觀賞

本影片介紹演示實驗發光胺(魯米諾)溶液在銅線的催化下,所產生的螢光反應,並在文章中介紹光化反應的原理。

clip_image002

影片網址:發光的「銅」心,https://youtu.be/tpX6x7XfhPw

n  簡介

發光胺(Luminol, C8H7N3O2)俗稱魯米諾,是一種白色近淡黃色的結晶粉末,是最常用的化學螢光劑之一,在鹼性的水溶液環境中,形成雙陰離子的魯米諾,遇到氧化劑(如雙氧水)產生的氧氣,反應生成激發態的3-胺基鄰苯二甲酸根離子(3-aminophthalate),隨後發出藍色螢光回到基態的3-胺基鄰苯二甲酸根離子,藍色螢光的波長為425 nm[1]。因為反應結果相當靈敏,通常用於命案現場血跡的追蹤,藉以判斷第一現場的位置,刑事鑑定上通常以氫氧化鈉配製成鹼性溶液並與雙氧水混合,當遇到血跡,血液中血紅蛋白的鐵會立刻催化雙氧水的分解,引發後續的光化學反應。本實驗參酌英國皇家化學會網站演示實驗內容[2],改以銅線為催化劑,在乙二胺四乙酸四鈉(EDTA-4Na)與氨水的鹼性環境中,觀察魯米諾溶液的光化學反應以及因為錯合反應所造成溶液的變化。相關詳細實驗步驟及原理,分述如下:

n  藥品與器材

1.          A溶液:發光胺(Luminol, C8H7N3O2,魯米諾 0.10克、2.0 M NH3 15毫升、乙二胺四乙酸四鈉(EDTA-4Na, C10H12N2O8Na4 0.20克。

2.        B溶液1.0 M H2O2 3毫升。

3.        同軸纜線(30公分長) 1條、單芯銅線(15公分長) 1條、培養皿 1組、濾紙(直徑9公分)1張、玻璃試劑瓶(20毫升)1個、燒杯(50毫升) 2個、玻棒1支、血清瓶(100毫升) 2個。

n  實驗步驟與結果

一、  實驗溶液配製及準備

1.        取一個50毫升的燒杯中,加入15毫升的2.0 M NH3中。接著,秤取0.10克的發光胺與0.2克的乙二胺四乙酸四鈉(EDTA-4Na)粉末,加入燒杯中,緩慢地攪拌使固體完全溶解,形成A溶液。A溶液中計約含30毫莫耳的NH30.55毫莫耳的發光胺、0.55毫莫耳的EDTA-4Na。另取3毫升的1M H2O2B溶液備用,其中H2O2約計3毫莫耳。

2.        取一段約30公分長的同軸纜線,剝掉黑色的塑膠外層、網狀導電體、鋁箔及絕緣用的聚乙烯塑膠後,抽出銅線;再以尖嘴鑷子彎折出兩個大小不一的心形,備用。

3.        若有多餘的線材,可環繞鉛筆彎折成立體螺旋狀,備用;若線材不足亦可使用較粗的單芯銅線取代。圖1為彎折的銅線的式樣。

clip_image004

1:圖左方的心形是以同軸纜線彎折

二、  實驗演示

1.        演示方式一:新鮮配製完成的AB兩溶液,緩慢地倒入一個預先鋪好濾紙的培養皿中,淹沒並覆蓋整張濾紙,隨即將兩個心形銅線放置在溶液中,觀察心形銅線周圍發生的變化;關閉電源,觀察螢光反應的發生,接著適度搖晃培養皿後靜止,觀察螢光的擴散變化。圖23為魯米諾在培養皿中的變化。

clip_image006

2:關燈下,出現心形螢光

clip_image008

3:反應一段時間後,心形銅線周圍溶液變為綠色

2.        演示方式二:另行配製的AB兩溶液,緩慢地倒入一個20毫升的玻璃試劑瓶中。隨即關燈,觀察螢光發生的情形;搖晃銅線,觀察瓶中螢光的變化。當螢光轉弱時,打開電源至反應結束,觀察溶液顏色的變化。圖4~6為溶液的觀察紀錄。

clip_image010

4:立體螺旋銅線周圍出現發光胺的螢光過程

clip_image012

5:過程中立體螺旋銅線周圍出現氣泡,溶液為綠色

clip_image014

6:反應結束後,溶液轉變為深藍色

n  原理與概念

發光胺(魯米諾),為難溶於水的淡黃色粉末,化學式為C8H7N3O2,在一般的演示實驗中,多是配製兩種溶液,一種是作為氧化劑的雙氧水,另一種是將發光胺配製在氫氧化鈉或碳酸鈉存在的鹼性溶液中,其中並加入硫酸銅以作為雙氧水分解的催化劑;發光胺在鹼性溶液中會形成雙陰離子(dianion),當兩液混合時,銅離子會催化雙氧水而發生分解反應,產生氧氣[3],氧氣進而與雙陰離子反應,生成激發態的3-胺基鄰苯二甲酸根離子(3-aminophthalate),隨後發出藍色螢光回到基態[4]。圖7為發光胺產螢光的詳細反應過程。

clip_image016

7:發光胺產螢光的詳細反應過程

本實驗以銅線取代銅離子,銅線在雙氧水的氧化下,產生銅離子[5],藉由EDTA與銅離子間極高的穩定常數Kc = 1018.8,形成高穩定的螯合物[Cu(EDTA)]2,銅離子瞬間大幅減少,進而抑制了銅離子催化雙氧水的分解速率[6][7],螢光發光時間也由傳統化學演示的30秒,延長至十數分鐘不等;光反應的區域侷限在細銅線狹窄的周圍,距離銅線越遠,銅離子的濃度越低,培養皿大部分的區域,幾無光化學反應進行,呈現一片黑暗;若搖晃培養皿,銅離子擴散開來,螢光亦隨之散開,圖8為搖晃培養皿導致發光強度更佳。

clip_image018

8:搖晃培養皿,銅離子擴散開來,催化發光胺的發光。

當玻璃試劑瓶的反應經歷一段時間後,因為螯合的Cu(EDTA)2的生成,溶液為綠色;本實驗因發光胺為限量試劑,數分鐘後便不再發光;同時隨著EDTA-4Na的減少,未螯合的銅離子濃度升高,雙氧水的催化反應速率越來越快,實驗最後因銅離子與氨水錯合,溶液變為深藍色。

經實驗測試,其他螯合化合物,如草酸鈉等亦可像EDTA一般,抑制銅離子的催化反應,延長演示時間。

n  安全注意及廢棄物處理

n  參考資料

1.      Luminol, https://en.wikipedia.org/wiki/Luminol.

2.      Lighting up copper, https://eic.rsc.org/exhibition-chemistry/lighting-up-copper/2000050.article.

3.      Spyridon Skounas, Constantinos Methenitis, George Pneumatikakis, and Michel Morcellet (2010). Kinetic Studies and Mechanism of Hydrogen Peroxide Catalytic Decomposition by Cu(II) Complexes with Polyelectrolytes Derived from L-Alanine and Glycylglycine. Bioinorganic Chemistry and Applications. Volume 2010 (2010), Article ID 643120, from https://www.hindawi.com/journals/bca/2010/643120/.

4.      Bassam Z.Shakhashiri, Chemical Demonstrations, Vol. 1, The university of Wisconsin press (1983), p. 156-167.

5.      Will hydrogen peroxide blacken copper?, http://antoine.frostburg.edu/chem/senese/101/redox/faq/h2o2-cu.shtml.

6.      EDTA, http://en.wikipedia.org/wiki/EDTA.

7.      李威霖(2010)。以電解系統處理化學銅廢水研究。國立交通大學機構典藏畢業論文。參閱https://ir.nctu.edu.tw/bitstream/11536/44014/2/651603.pdf.

 




自組裝分子膜製程開發及性質研究 ──防偽標章之製作/呂雲瑞、林明祥

自組裝分子膜製程開發及性質研究

──防偽標章之製作

呂雲瑞*ac、林明祥bc

a台北市立西松高級中學
b新北市立林口高級中學
c教育部高中化學學科中心
*[email protected]

n影片觀賞

本實驗影片由教育部高中化學學科中心和台灣多媒體創意教學協會提供。

影片網址:https://www.youtube.com/watch?v=7PLoETfndrg, YouTube.

n簡介

微觸印刷原先為用於半導體產業製作,聚二甲基矽氧烷(polydimethylsilicoxanePDMS)俗稱矽油,是經有機金屬的交叉鏈結反應(crosslinkilng reaction)固化而成的聚合物,固態的聚二甲基矽氧烷為一種矽膠,無毒、疏水性、非易燃性、且透明的惰性彈性物質。利用PDMS的性質,透過硫醇溶液的附著,讓有機碳鏈物質吸附在PDMS的凸面,使得特殊圖案在金屬表面上形成能夠長時間密合的自組裝分子膜,再依據其疏水性,於使用時以口中水氣辨識圖騰。有關PDMS的結構與交叉鏈結反應如圖1所示: 

 1兩種不同的PMDS(聚二甲基矽氧烷)的結構式(上)和本實驗之交叉鏈結反應(下

自組裝分子膜(self-assembly monolayer, SAM的成膜原理是通過固、液界面間的化學吸附,在基板上形成化學鍵連接的、取向排列的、緊密的二維有序單分子層,活性分子的頭基與基板之間得化學反應使活性分子佔據基體表面上每個可鍵結的位置,並通過分子間作用力使吸附分子緊密排列。如果活性分子的尾基也具有某種反應活性,則又可繼續與別的物質反應,形成多層膜。經由加工所製造出來的印章可重複多次使用,而且表面多具有化學惰性,因此接觸轉印完後,會很容易的離開表面,就算有灰塵附於其上也很容易洗去,運用此特性,我們可以十分簡便的大量精密複製我們所需的薄膜。當墨水和基板發生反應後便形成自組裝單分子層(self-assembled monolayers, SAMs),單分子層對化學腐蝕液有阻隔作用,用蝕刻劑進行腐蝕,就在基板上得到與原蝕刻圖案完全一樣的精細圖案。有關自組裝分子膜的成膜原理,如圖2所示:

2自組裝分子膜的成膜示意圖

n藥品與器材

本實驗所需相關材料,如圖3所示。

1.          烤箱

2.          電子秤

3.          金屬器皿

4.          PDMS主劑(Sylgard polymer)〈註1

5.          PDMS固化劑〈註1

6.          1,6-己烷基雙硫醇1,6-Hexanedithiol, HDT

7.          乙醇

8.          金屬片(基板)

9.          硬幣(轉印物件)

3需要的藥品與器材

n實驗步驟

一、轉印圖章PDMS製作

1.        10:1比例調和兩種不同的PDMS主劑及固化劑。

2.          倒入金屬容器並攪拌避免氣泡產生。

3.          放入硬幣、象棋作為模型。

4.          放入烤箱固化。

5.          脫模並裁切邊緣。

二、轉印圖案於基板

己烷基雙硫醇HDT)於印章上。

2.      以乙醇清洗多餘HDT

3.      將圖案蓋印在基板表面。

n安全注意及廢棄物處理

己烷基雙硫醇藥品有刺激臭,宜在通風良好,或抽氣櫃中進行。

n附註

1.        藥品購買參考網址:http://www.ellsworth.com/dow-corning-sylgard-184-silicone-encapsulant-0-5kg-kit-clear/

n參考資料

 Tien, J.; Ingber, DE.; and Whitesides, GM. Using Microcontact Printing to Pattern the Attachment of Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver. Exp. Cell Res. 1997 Sep 15;235(2):305-13.

2.      Microcontact Printing, The Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, https://nano-cemms.illinois.edu/materials/microcontact_printing_full.