奈米課程:神秘且有趣的軟性光子晶體:藍相液晶 /陳惠玉

奈米課程:神秘且有趣的軟性光子晶體:藍相液晶

陳惠玉

國立中興大學 物理學系 特聘教授
[email protected]

自然界中普遍的物質會因為溫度的上升或下降產生不同的相態;以我們生活中每天在使用的水為例:在常溫的狀態下,水處於液體的狀態,當溫度上升至100℃時(在一大氣壓下),水會進入氣體的狀態(也就是蒸氣),但如果將溫度下降至接近0℃,水則會慢慢的固化,以固體的狀態存在(即冰);我們把水的狀態改變過程,稱為「物質的相(態)變()」。我們可以利用下圖1,從物質所處的相態知道組成物質的分子或者是原子間的運動速率的快慢及排列的有序程度。當水在氣體的狀態時,水分子獲得許多(熱)能量,因此會自由地以較高的速度運動,且水分子與水分子間的距離時而近而遠;降低溫度,水分子獲得的能量開始下降,水分子的運動速度也開始變緩,水分子間的距離開始縮短,水進入了液體狀態;持續地降低溫度,水分子的運動速度越來越慢,慢到幾乎靜止,水分子間的距離也幾乎不變,此時水處於固體的狀態。特別的是,許多其他的物質在低溫(固體)時,分子(原子)排列會具有一定的規則性,這時我們會使用更精準的名詞「晶態」去稱呼這個固體狀態。當物質中的分子(原子)排列具高度規則性,會產生許多有趣的物理特性,包含:電性、磁性、光學及機械特性等;只要能夠善加利用且控制這些特性,便可以為人類的生活帶來許多的便利性,而這樣的技術也確實已經普遍地落實在我們的生活裡。

 1 溫度改變時,物質的三個基本相態 Solid:  固態;Liquid: 液態;Gas: 氣態)(圖片來源:freepik

除了以上三種大家耳熟能詳的物質狀態外,在大多數的有機物質我們有機會觀察到第四個物質的狀態液晶(Liquid Crystal)狀態,相信大多數的人對於液晶這個名詞一定不陌生,因為在許多大大小小的顯示元件上都可以看見。然而,我們必須了解液晶並不是單指一種特別的材料,而是指材料所處的相態在液晶態。因此當我們將液晶顯示元件加熱高於相變溫度時,便可以看見因為材料轉換成液體狀態而產生有別於液晶態的光學現象;當將液晶顯示元件丟入冷凍庫中降溫,則材料便會由液晶態轉變到晶態(可以去查查您用的液晶螢幕手機是否有標示工作溫度範圍呢?);這些相態的改變基本上是一個可逆的過程。從上面的描述我們可以知道,材料的液晶態是一個處於液體狀態跟晶體狀態間的相態;在液晶態的分子,分子間的作用力略大於液體,但分子的排列有序性略低於晶體;因此它同時擁有液體的易流動性及我們前面所提到晶體的特殊物理特性。由於分子間的作用力低於晶體且容易流動,相較於晶體,我們僅需要提供一個很小的能量,控制分子的運動,造成分子的排列發生變化進而改變了一些物理特性;生活中每天都在使用的液晶螢幕仰賴的就是透過外加一個低伏特(大多小於1V)來改變材料在液晶相態時的分子排列,藉由此控制材料的光學特性,讓材料變成一個電控的光開關YouTube: What are liquid crystals? https://youtu.be/MuWDwVHVLio

年三星電子首度公開發表世界第一台藍相液晶顯示器,並向世界宣告藍相液晶顯示器過人的優點,包含了微秒等級的反應時間,製程上簡化及高度對比等;可取代目前由向列型液晶為主的許多元件,如顯示器、光調制器及液晶波片等;隨即引起了各地研究團隊的注目,也再度引起是人們對藍相液晶的好奇。藍相液晶除了可以作為顯示材料使用外,藍相液晶的光學特性類似於光子晶體並可以在空間中的三個維度分別產生不同波長的雷射光;或者作為可調式液晶波片,液晶透鏡以及液晶光纖等廣泛的用途。

)。

,這些圓柱體會自行相互堆疊組合成三維軟性光子晶體,也就是「藍相液晶」。圖中的照片是透過專業反射式偏光顯微鏡拍攝的膽固醇液晶相及藍相液晶,顯示出來的顏色是被液晶相態反射光的波長決定;利用觀察到的波長及參考布拉格反射定律,我們可以計算出膽固醇液晶相下,一維螺旋的長度;或者是獲知藍相液晶的晶格大小。

)。

利用高倍聚光鏡將單色角錐光打在藍相液晶後,因為晶格繞射所產生的圖案;從照片中的線條可以計算反射的晶格面,線與視場中心點的距離則可以提供晶格常數的資訊。

,這也是藍相液晶非常吸引人的一塊);加上液晶原有的可流動性,藍相液晶又可以被稱為「自聚組軟性三維光子晶體」。

clip_image010

顯微鏡下的藍相液晶,絢麗的顏色來自於晶體週期性結構的反射,在同一個樣品中,因為區域性晶格面的不同,我們有機會可以看見非常多的顏色。

clip_image014

                                                                      (b)

)。

,因為晶格常數較小,會反射藍色光波;當給藍相液晶一個適當的電壓時,晶格開始被扭曲了,沿著電場的方向的晶格常數會變大,另外兩個垂直電場方向的晶格常數則不變,因此藍相液晶會從反射藍光變化成反射綠光,持續地增加電壓,反射光則會在往紅光方向移動。但在電壓解除了因為液晶晶體結構的彈性恢復力,可以讓藍相液晶的晶格快速地回到原本的狀態。

  結語

藍相液晶目前雖然還未應用在實際的光學元件中,但在許多的研究中都已經驗證了其優越的光學特性,除了可以作為顯示元件外,也可以運用在智慧窗、光波長調制元件及光波導元件等等廣泛運用中。為了實現藍相液晶的應用,近幾年來有大量的研究將重心移向如何穩定藍相液晶結構及控制晶格成長的方向,不論是從材料合成下手、製程控制或者是基板構造設計等,都可讓人期待藍相液晶無窮的應用潛力。